Failure mode, effects, & criticality analysis (FMECA) is a structured work priority system that helps teams make the best possible use of maintenance resources. Today, most manufacturing operations face time, budget, and expertise constraints. Every part of a system plays a role in the manufacturer’s success. And while failures in some areas may only be a minor inconvenience, in others they can bring production grinding to a halt.
Today, FMECA is a standard way to analyze and prioritize potential failures. FMECA drives smart decisions about where to allocate your resources so that they have the most impact. In this article, we’ll talk about what FMECA is and what it can do for your operation. We’ll also explain the differences between FMECA and other work priority systems, like failure mode and effects analysis (FMEA).
¿Qué es el análisis modal de fallos, efectos y criticidad (FMECA)?
FMECA involves analyzing processes to determine their potential failure points. Once you’ve identified those failure points, you can investigate how they impact the entire process. This information allows maintenance teams to prioritize work, predict failures, and maximize uptime since they can prioritize maintenance issues or perform preventive maintenance before interruptions occur.
FMECA es un sistema de prioridades de trabajo basado en datos. Es uno de los enfoques más granulares y sistemáticos para clasificar las tareas de mantenimiento. El FMECA consta de tres partes, cada una de las cuales alimenta a la siguiente:
- Failure mode identifies the points at which an asset or system can fail. Typically, there are multiple failure modes for every piece of equipment.
- Effects determine how each potential failure will impact operations. Not all failure modes are created equal. Some don’t significantly impact productivity, while others can bring production to a standstill. It’s essential to know which failure modes pose the most risk.
- Criticality analysis determines which failure modes are the most severe in terms of their effect on operations. This step takes productivity, safety, and environmental considerations into account.
Done right, FMECA can pinpoint the failure modes that matter most to a plant. Once those are determined, an organization can focus its maintenance efforts on the assets and components that need it the most.
¿Por qué realizamos el FMECA?
The goal of performing a failure mode, effects, and criticality analysis is to better understand potential risks and find ways to prevent failures before they happen. Performing FMECA lets organizations:
- Gain supportable, data-driven insights: Manufacturers have many machines and processes running across the production floor. At any given time, there may be multiple work orders for different assets that require repairs or parts that need to be replaced. Instead of making a gut decision about which repairs to prioritize, the FMECA approach strategizes which repairs or preventive maintenance tasks teams should complete first.
- Focus on high-priority tasks: FMECA gives each failure mode a criticality rating. When a maintenance team has multiple work orders, that rating allows them to prioritize the most critical work orders. Teams can focus on the assets, components, and processes that need it most.
- Improve preventive maintenance practices: Performing FMECA can help pinpoint common areas of failure. From there, the maintenance team can implement or tweak preventive maintenance practices to be more effective.
- Ensure workplace safety: An important aspect of FMECA is ensuring that any breakdowns that threaten your team members’ physical safety receive top priority.
- Minimize downtime: FMECA enables teams to prioritize repairs that impact production quality or the asset’s performance. This minimizes downtime and ensures the production floor continues running as effectively as possible.
- Improve equipment lifespan: FMECA also supports the longevity of your equipment and assets by identifying critical repairs and ensuring they are handled immediately and effectively.
Cómo realizar el FMECA: un proceso paso a paso
Ahora que hemos repasado qué significa FMECA y por qué es importante, es hora de poner en práctica nuestros conocimientos. Realizar el FMECA puede llevar mucho tiempo, pero los beneficios tendrán un impacto duradero en tu empresa.
It may take a wide range of people in various roles throughout your organization to perform an effective FMECA analysis. These could include engineers, technicians, maintenance staff, product managers and designers, and manufacturing personnel. Each of these areas of expertise can help identify and mitigate failure modes, resulting in a more thorough and effective FMECA analysis.
Here are the steps for performing an FMECA analysis:
1. Define the Scope of Your Analysis
Identify the system or process you want to analyze. This could be a single manufacturing asset or the entire manufacturing process.
2. Identify All Relevant Factors
- Identify the components: Break the system or process down into each part or subsystem.
- Identify potential failures: Brainstorm every possible failure mode, from small to large.
- Identify the effects of each failure: For each failure, determine the possible effects. These could include injuries, damaged machinery, unplanned downtime, quality issues, and more.
3. Assign Ratings
- Assign each failure a severity rating: Severity scores typically range from 1-10, with 1 representing a minor issue and 10 representing a severe issue. Severity ratings can be based on financial loss, equipment damage, safety issues, etc.
- Assign each failure an occurrence rating: Give each failure an occurrence rating from 1-10, with 1 being the least likely to occur and 10 being extremely likely to occur.
- Assign each failure a detection rating: The detection rating is the likelihood that each failure will be detected, with 1 meaning that it is highly likely to be detected and 10 meaning that it will go undetected.
4. Calculate the Risk Priority Number (RPN)
Multiply the severity rating, the occurrence rating, and the detection rating for each failure:
severity rating x occurrence rating x detection rating = RPN
The resulting number is the risk priority number. Higher risk priority numbers represent higher-impact failures, while lower numbers represent failures that are less likely to occur or less damaging when they do occur.
5. Prioritize and Implement Actions
Develop and prioritize actions to mitigate or eliminate the risk of higher RPN failures occurring. This could include updating or adding preventive maintenance procedures, improving environmental controls, or adding protective devices or safeguards.
6. Monitor and Review
Monitor the system for new FMECA failure modes and evaluate the effectiveness of the actions implemented.
El FMECA es un proceso iterativo. Debe repetirse periódicamente para comprobar la eficacia de los procedimientos de mitigación y tener en cuenta las lecciones aprendidas. La mejora continua es clave para garantizar que su FMECA siga siendo un recurso eficaz y relevante para su organización.
What Are the 3 Types of FMECA?
There are three main types of FMECA. Each type helps organizations proactively address reliability and safety concerns, but they are focused on different areas.
1. System FMECA
This type of FMECA is focused on high-level systems rather than specific components. It’s used to evaluate how failures in functions impact the overall operation, and is useful in the early design stages when physical components haven’t been fully defined.
System FMECA example: Analyzing how a failure in a cooling system function could lead to overheating in a plant.
2. Design FMECA
Design FMECA focuses on examining individual hardware and components within a system. It identifies how failures such as a broken circuit or a damaged bearing could affect the system. It’s often used in manufacturing to improve reliability.
Design FMECA example: Analyzing how a failed capacitor in a power supply affects an electrical circuit.
3. Process FMECA
This type of FMECA examines potential failures in manufacturing processes. It helps locate pain points in assembly, production, or maintenance procedures and is useful for improving quality control.
Process FMECA example: Analyzing how incorrect torque settings during assembly could lead to premature bolt failure.
The basic steps for performing a failure mode, effects, and criticality analysis remain the same for all three types of FMECA: identify potential failure modes, determine the effects, prioritize failure modes, and develop strategies to reduce the impact of failures.
What Is an FMECA Failure Mode?
A failure mode in FMECA refers to the specific way in which a component, subsystem, or system can fail. It describes what goes wrong, not necessarily why it happens.
Some FMECA examples of failure modes include a motor overheating, a circuit shorting out, or a bolt loosening over time. Each of these is a different failure mode because they represent different ways a system could fail.
Once you know the possible failure modes, you can determine the effects, causes, and criticality and take steps to avoid these failures.
Ventajas e inconvenientes del análisis FMECA
El FMECA puede ser una herramienta útil para las empresas que buscan conocer mejor los posibles problemas y mejorar los procesos existentes. La realización de este análisis puede:
- Revelar vínculos entre fallos y resultados, proporcionando una imagen más clara de cómo los fallos repercuten en el resto de la fábrica y permiten a los equipos de mantenimiento tomar medidas para reducir la probabilidad de fallos.
- Permiten a la fábrica aplicar medidas preventivas y reducir el riesgo de averías, lo que se traduce en un menor tiempo de inactividad y una mayor fiabilidad del sistema.
- Ayudar a priorizar las tareas de mantenimiento preventivo y correctivo, garantizando el uso más eficaz de los recursos de mantenimiento.
- Proporcionar datos que puedan utilizarse para contribuir a la eficiencia y eficacia de las operaciones de la planta, como identificar qué activos podrían ser candidatos a un mantenimiento predictivo.
- Garantizar un entorno de trabajo más seguro para los empleados reduciendo o eliminando los riesgos para la seguridad.
- Identificar los puntos débiles de las prácticas actuales en todo el sistema, lo que conducirá a mejoras generales.
Aunque el análisis FMECA puede ser útil para identificar y mitigar posibles problemas en una fábrica, tiene algunos inconvenientes:
- Puede llevar mucho tiempo reunir y analizar todos los datos necesarios.
- Puede ser costosa porque requiere un equipo interfuncional de expertos para llevarla a cabo con eficacia.
- Debe completarse más de una vez para realizar ajustes y producir mejoras continuas. Por ejemplo, tras la realización inicial, un equipo puede necesitar completar un segundo FMECA cuando se realicen cambios en los activos o sistemas, o cuando se produzcan cambios importantes en los procesos.
- Requiere gestionar y organizar una gran cantidad de datos, lo que puede resultar difícil para las empresas que utilizan sistemas tradicionales en papel o aplicaciones digitales aisladas.
Aunque puede haber obstáculos para realizar el FMECA, los beneficios a largo plazo del análisis y los cambios resultantes a menudo superan los costes. Para obtener el máximo beneficio, es importante determinar el mejor momento para realizar el FMECA y asegurarse de hacerlo de forma completa.
¿Cuándo se debe realizar un análisis FMECA?
There are a few key times when conducting FMECA is most beneficial to an organization:
- Before manufacturing begins: When a system is still in the design phase, performing an FMECA analysis allows the engineering team to tweak designs and assets and make other changes to ensure the system runs as effectively as possible from the moment it’s up and running.
- To improve reliability: Teams can perform an FMECA analysis during the production phase while the facility is operating normally. It can provide actionable insights and highlight potential changes to improve operations.
- After system upgrades or changes: When assets are upgraded or major changes are made to manufacturing systems or procedures, it makes sense to repeat an FMECA analysis to get ahead of any potential failures that changes may have introduced.
- After a major failure: When a major failure has occurred, performing FMECA can help reveal the root cause of the problem and improve reliability and safety by identifying corrective actions that should be taken to avoid it happening again.
- During maintenance planning: FMECA analysis can assist maintenance teams when creating or updating preventive maintenance scheduling. The maintenance team can use it to create an optimal preventive maintenance schedule for each asset and analyze which assets or systems are most important to production. It can also be performed to help identify the best candidates for predictive maintenance.
La realización de FMECA puede ser increíblemente útil para su organización, pero también puede llevar mucho tiempo y ser costosa. Y aunque la mejora continua es el objetivo, no tiene sentido utilizar los recursos para realizar FMECA con más frecuencia de la necesaria.
¿Qué funciones utilizan los resultados del FMECA?
Hay muchas funciones cuyas operaciones diarias se ven directamente afectadas por los resultados del FMECA. Entre ellas se incluyen:
- Engineers and designers: These specialists use FMECA results to make changes to the design or operation of a factory to help reduce the risk of failures and improve system performance.
- Maintenance engineers and personnel: These employees use FMECA to make changes or improvements to predictive, preventive, and corrective maintenance practices.
- Safety engineers: The results of an FMECA analysis help safety engineers ensure products and systems are safe for use, and may use FMECA analysis to make improvements to processes to ensure safety.
- Regulatory compliance officers: Can use FMECA results to demonstrate compliance with safety and quality standards.
- Operations managers: FMECA analysis helps operations managers identify failure modes and develop strategies to mitigate the failures.
Otras funciones, como los profesionales de gestión de riesgos y los equipos de garantía de calidad, también pueden beneficiarse de un análisis FMECA. Todas estas funciones utilizan los resultados del FMECA de diversas maneras, y su experiencia en la mejora de las operaciones en toda la instalación puede tener un impacto a largo plazo en la fiabilidad y el rendimiento de las operaciones.
Dado que muchas de estas funciones también son importantes para el desarrollo de un análisis FMECA, el proceso de realización del análisis puede ser una buena manera de capturar y documentar los conocimientos que estos profesionales aportan a la organización, garantizando que todo el equipo pueda beneficiarse de sus ideas.
¿Cuál es la diferencia entre FMECA y FMEA?
El análisis modal de fallos y efectos (FMEA) es un pariente cercano del FMECA. Al igual que el FMECA, el FMEA identifica posibles fallos y estudia el posible efecto dominó de cada uno de ellos.
It can be helpful to think of FMECA as the next stage after FMEA. FMEA identifies a wide range of potential failures that could affect the production line, but FMECA provides an actionable plan for each failure.
FMECA brings in more data to determine the concrete impact of each failure mode. This allows teams to give each potential failure a criticality rating, which is how they determine which components and assets are the most critical to operations. For example, a reliability engineer looking to start a predictive maintenance program might use FMECA to determine where best to launch their wireless vibration sensor pilot, or even where to focus maintenance efforts in general.
Ideally, operations should use both FMEA and FMECA. Together, the two approaches identify failure modes, determine their impact on the final product, and make the best possible use of maintenance resources.
Here’s a table outlining the differences between FMEA and FMECA:
What Is the FMEA Method of Analysis?
The FMEA method of analysis is very similar to the FMECA method. However, the FMEA stops before getting to the criticality analysis and doesn’t rank failures according to their impact.
FMEA focuses on understanding risk failures and their effects, but FMECA takes this a step further by quantifying risks and assessing the criticality of the failure. While FMEA is a good starting point for FMECA, FMECA allows teams to extend their analysis and improve their decision-making to improve reliability and safety.
How Does FMECA Criticality Analysis Work?
The final step to implementing FMECA is determining the criticality of each defined failure. The criticality helps prioritize repairs and mitigation strategies, and can be based on the RPN number calculated previously. Higher numbers mean that the failure is more likely to occur and/or that failures are more damaging and impactful when they do occur, while lower numbers mean that failure is unlikely and, even if it did happen, it wouldn’t have a high impact on other areas of production.
This is not the same as an asset criticality analysis. However, both FMECA and an asset criticality analysis can help you determine where to direct maintenance resources.
In addition to the risk priority number, you can ask these additional questions to help you determine failure criticality:
- How much would downtime affect production or output?
- Could failure lead to injuries, fatalities, or environmental damage?
- How expensive and difficult is it to repair the asset?
- Does failure violate industry regulations or compliance?
- Are there backup systems in place?
You should first focus maintenance resources on potential failures that are severe enough to impact safety or immediate operations. Don’t get bogged down trying to prepare for very rare problems or even common problems that don’t significantly undermine production.
El análisis de criticidad es probablemente la pieza más importante del FMECA, por lo que merece la pena dedicar tiempo a aplicarlo correctamente. Asociarse con proveedores experimentados que puedan ayudar a su equipo también puede ser una buena idea.
Uso de una GMAO para FMECA
FMECA is one of the most data-driven work priority systems available, and it’s easier to implement with the right tools. That’s why a computerized maintenance management system (CMMS) like eMaint is a natural fit for managing FMECA analysis. FMECA makes predictions about future maintenance needs. But it needs plenty of detailed, accurate data to make those predictions, which is where eMaint comes in.
With eMaint, you can:
- Effortlessly store and search work order data
- Use the reporting function to build a list of failure modes
- Use eMaint failure codes to determine how often failures occur
eMaint has work order and reporting features that let you pinpoint the impact of past machine failures. Which failures had a domino effect on other assets? Which caused your operation to shut down? Use these insights to predict and prevent the impact of each failure mode.
Una vez determinados los modos de fallo y sus efectos, puede realizar el análisis de criticidad.
Working with the Experts on FMECA
The experts at Fluke Reliability offer an asset criticality workshop for teams working to implement FMECA. The training covers key FMECA topics like:
- Modos de fallo
- Gravedad de los modos de fallo
- Probabilidad de ocurrencia
- Prioridades de riesgo
Al final de nuestra formación FMECA de cinco días, sus equipos habrán realizado una revisión exhaustiva de los posibles fallos de los componentes y sus efectos. También aprenderá en qué tareas de mantenimiento deben centrarse sus equipos para minimizar las posibilidades de que se produzcan los modos de fallo más graves.
This training is a great way to start shifting to a structured, data-driven decision-making process. And before long, you’ll likely see changes across your whole operation, leading to greater productivity and less unplanned downtime.
Para saber más sobre la formación FMECA y cómo una GMAO puede ayudarle a optimizar su plan de mantenimiento, hable con un especialista de eMaint.